Sum-to-Product
Formulas

$$
\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]
$$

Let $A=\frac{x+y}{2}$ and $B=\frac{x-y}{2}$

$$
\begin{aligned}
& A+B=\frac{x+y}{2}+\frac{x-y}{2}=\frac{x+y+x-y}{2}=\frac{2 x}{2}=x \\
& A-B=\frac{x+y}{2}-\frac{x-y}{2}=\frac{x+y-x+y}{2}=\frac{2 y}{2}=y \\
& \sin \frac{x+y}{2} \cos \frac{x-y}{2}=\frac{1}{2}[\sin x+\sin y] \\
& 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}=\sin x+\sin y \\
& \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
\end{aligned}
$$

$$
\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
$$

Replace y with $-y$,

$$
\begin{aligned}
& \sin x+\sin (-y)=2 \sin \frac{x+(-y)}{2} \cos \frac{x-(-y)}{2} \\
& \sin (-y)=-\sin y \\
& \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\
& \cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
& \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\end{aligned}
$$

Write $\sin 2 x-\sin 7 x$ as a product
use $\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$

$$
\begin{aligned}
& \sin 2 x-\sin 7 x=2 \cos \frac{2 x+7 x}{2} \sin \frac{2 x-7 x}{2} \\
&=2 \cos \frac{9 x}{2} \sin \frac{-5 x}{2} \quad \operatorname{Recall} \\
& \sin (-A)=-\sin A \\
&=-2 \cos \frac{9 x}{2} \sin \frac{5 x}{2}
\end{aligned}
$$

Show $\quad \cos 87^{\circ}+\cos 33^{\circ}=\sin 63^{\circ}$
use $\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

$$
\begin{aligned}
& \cos 87^{\circ}+\cos 33^{\circ}=2 \cos \frac{87^{\circ}+33^{\circ}}{2} \cos \frac{87^{\circ}-33^{\circ}}{2} \\
& =2 \cos \frac{120^{\circ}}{2} \cos \frac{54^{\circ}}{2} \\
& \cos A=\sin \left(90^{\circ}-A\right)=2 \cos 60^{\circ} \cos 27^{\circ} \\
& =2 \cdot \frac{1}{2} \cos 27^{\circ} \\
& =\cos 27^{\circ}=\sin \left(90^{\circ}-27^{\circ}\right) \\
& =\sin 63^{\circ}
\end{aligned}
$$

Find the exact value of $\cos 255^{\circ}-\cos 195^{\circ}$
use $\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

$$
\begin{aligned}
\cos 255^{\circ}-\cos 195^{\circ} & =-2 \sin \frac{255^{\circ}+195^{\circ}}{2} \sin \frac{255^{\circ}-195^{\circ}}{2} \\
& =-2 \sin 225^{\circ} \sin 30^{\circ} \\
& =-2\left(-\sin 45^{\circ}\right) \cdot \frac{1}{2} \\
& =-2 \cdot \frac{-\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\text { Geraph } \begin{aligned}
y & =\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x} \\
y & =\frac{\sin 3 x \cdot \cos x-\cos 3 x \cdot \sin x \rightarrow \sin A \cos B-\cos A \sin B}{\sin x \cos x}=\sin (A-B) \\
& =\frac{\sin (3 x-x)}{\sin x \cos x}=\frac{\sin 2 x}{\sin x \cos x} \\
& y=2 \\
& =\frac{2 \sin x \cos x}{\sin x \cos x} \Rightarrow y=2
\end{aligned}
$$

